A Systematic Study of Isomorphically Substituted H‐MAlPO‐5 Materials for the Methanol‐to‐Hydrocarbons Reaction

نویسندگان

  • Magnus Mortén
  • Łukasz Mentel
  • Andrea Lazzarini
  • Ilia A Pankin
  • Carlo Lamberti
  • Silvia Bordiga
  • Valentina Crocellà
  • Stian Svelle
  • Karl Petter Lillerud
  • Unni Olsbye
چکیده

Substituting metals for either aluminum or phosphorus in crystalline, microporous aluminophosphates creates Brønsted acid sites, which are well known to catalyze several key reactions, including the methanol to hydrocarbons (MTH) reaction. In this work, we synthesized a series of metal-substituted aluminophosphates with AFI topology that differed primarily in their acid strength and that spanned a predicted range from high Brønsted acidity (H-MgAlPO-5, H-CoAlPO-5, and H-ZnAlPO-5) to medium acidity (H-SAPO-5) and low acidity (H-TiAlPO-5 and H-ZrAlPO-5). The synthesis was aimed to produce materials with homogenous properties (e.g. morphology, crystallite size, acid-site density, and surface area) to isolate the influence of metal substitution. This was verified by extensive characterization. The materials were tested in the MTH reaction at 450 °C by using dimethyl ether (DME) as feed. A clear activity difference was found, for which the predicted stronger acids converted DME significantly faster than the medium and weak Brønsted acidic materials. Furthermore, the stronger Brønsted acids (Mg, Co and Zn) produced more light alkenes than the weaker acids. The weaker acids, especially H-SAPO-5, produced more aromatics and alkanes, which indicates that the relative rates of competing reactions change upon decreasing the acid strength.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CFD modeling for selective formation of propylene from methanol over synthesized Mn-substituted MFI metallosilicate catalyst

The high silica Mn-substituted MFI metallosilicate catalyst with Si/Al molar ratio of 220 and Si/Mn molar ratio of 50 was successfully synthesized by hydrothermal method. The catalyst sample was appropriately characterized by XRD, FE-SEM, EDX and BET techniques. The Mn-substituted MFI metallosilicate has not been reported as the potential catalyst for the methanol to propylene (MTP) reaction. T...

متن کامل

Selective production of light olefins from methanol over desilicated highly siliceous ZSM-5 nanocatalysts

Highly siliceous ZSM-5 nanocatalysts can dehydrate methanol to a wide range of hydrocarbons. In this study, the development of hierarchical H-ZSM-5 nanocatalysts (Si/Al=200) were reported for the methanol-toolefins (MTO) reaction. The nanocatalysts were prepared through a hydrothermal technique and treated by NaOH desilication. The parent and desilicated nanocatalysts were characterized using F...

متن کامل

Methanol-to-Hydrocarbons Product Distribution over SAPO-34 and ZSM-5 Catalysts: The applicability of Thermodynamic Equilibrium and Anderson-Schulz-Flory Distribution

The product distribution of methanol to hydrocarbons conversion over SAPO-34 and ZSM-5 catalysts was studied using thermodynamic equilibrium and Anderson-Schulz-Flory (ASF) distributions. The equilibrium compositions were calculated using constrained Gibbs free energy minimization. The effect of catalyst type was considered by setting upper limits to product carbon number due to sh...

متن کامل

Investigation of Methanol Reaction Chemistry on H-ZSM-5 and -11

In order to gain a better understanding of the chemistry of methanl-to-hydro-carbon conversion, it is necessary to determine the nature of the primary reaction products. Experiments carried out in this work on H-ZSM-11, using a continuous flow reactor linked to an on-line gas chromatograph demonstrated that ethylene and methane are the primary reaction products. The results obtained using s...

متن کامل

Preparation of H-ZSM-5 Nano-Zeolite Using Mixed Template Method and its Activity Evaluation for ethanol to DME Reaction

H-ZSM-5 nano-zeolites were synthesized by hydrothermal method using tetrapropylammonium hydroxide (TPAOH) as a template in the presence of various TPABr concentrations. The effect of different TPABr/TPAOH molar ratios was studied on the catalytic performance of dehydration of methanol to dimethyl ether (DME) in a fixed bed reactor under the same operating conditions (T=300°C, P=1 atm, and WHSV=...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2018